Polyhedral results for the Equitable Coloring Problem

نویسندگان

  • Isabel Méndez-Díaz
  • Graciela L. Nasini
  • Daniel E. Severin
چکیده

In this work we study the polytope associated with a 0/1 integer programming formulation for the Equitable Coloring Problem. We find several families of valid inequalities and derive sufficient conditions in order to be facet-defining inequalities. We also present computational evidence of the effectiveness of including these inequalities as cuts in a Branch & Cut algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A polyhedral approach for the Equitable Coloring Problem

In this work we study the polytope associated with a 0,1-integer programmingformulation for the Equitable Coloring Problem. We find several families ofvalid inequalities and derive sufficient conditions in order to be facet-defininginequalities. We also present computational evidence that shows the efficacyof these inequalities used in a cutting-plane algorithm.

متن کامل

Equitable coloring of graphs. Recent theoretical results and new practical algorithms∗§

In many applications in sequencing and scheduling it is desirable to have an underlaying graph as equitably colored as possible. In this paper we survey recent theoretical results concerning conditions for equitable colorability of some graphs and recent theoretical results concerning the complexity of equitable coloring problem. Next, since the general coloring problem is strongly NP-hard, we ...

متن کامل

Animation Visualization for Vertex Coloring of Polyhedral Graphs

Vertex coloring of a graph is the assignment of labels to the vertices of the graph so that adjacent vertices have different labels. In the case of polyhedral graphs, the chromatic number is 2, 3, or 4. Edge coloring problem and face coloring problem can be converted to vertex coloring problem for appropriate polyhedral graphs. We have been developed an interactive learning system of polyhedra,...

متن کامل

Equitable coloring of corona products of cubic graphs is harder than ordinary coloring

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and it is denoted by χ=(G). In this paper the problem of determinig χ= for coronas of cubic graphs is studied. Although the prob...

متن کامل

Equitable colorings of corona multiproducts of graphs

A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the number of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted χ=(G). It is known that this problem is NP-hard in general case and remains so for corona graphs. In [12] Lin i Chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2011